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Abstract—A mobile opportunistic social network (MOSN) is
a new type of delay tolerant network (DTN), in which the
mobile users contact each other opportunistically. Information
dissemination is a challenging problem in MOSNs, due to uncer-
tainty and intermittent connectivity. In this paper, we propose a
distributed social tie strength calculation mechanism to identify
the relationship between each set of pairwise mobile nodes.
Following arguments originally proposed by Mark Granovetter’s
seminal 1973 paper,The Strength of Weak Ties, the majority of
the novel information dissemination is generated by weak ties.
We first evaluate the strength of weak ties inMIT reality mining
data. Then, a social-tie-based information dissemination protocol
is presented, which is a token-based information dissemination
scheme, including two phases:weak tie-driven forwarding and
strong tie-driven forwarding. In the weak tie-driven forwarding
phase, the susceptible nodes with more weak ties will receive
more tokens for future forwarding. The number of forwarding
tokens is related to the number of weak ties of two encountered
nodes. After a while, the information will have been spread
to multiple communities. Our scheme switches to a strong tie
driven forwarding phase, in which the influential nodes are more
important. The number of forwarding tokens is proportional to
the number of strong ties of two encountered nodes. Extensive
simulations are conducted in comparison to several approaches
in real world mobile traces.

Index Terms—Influential, information dissemination, local
bridge, mobile opportunistic social networks (MOSNs), social tie
strength, susceptible.

I. I NTRODUCTION

Social influence is empirically elusive in the social sciences.
Scholars from different fields as diverse as business, computer
science, physics, and sociology are interested in who influ-
ences whom, how to efficiently disseminate information, and
how to prevent virus contagion. The answers to these ques-
tions, which are critical to policies, depend on the robustness
of estimations of the degree to which contagion is at work
during the social information influence [1].

Delay tolerant networks (DTNs) [2] are characterized by
intermittent connectivity and limited network capacity, in
which most of the time there does not exist an end-to-
end path between some or all of the nodes in the network.
With the popularization of smart phones, mobile opportunistic
social networks (MOSNs), a new type of DTN, have recently
become popular. In MOSNs, the individuals carrying smart
phones walk around and communicate with each other via
Bluetooth or WiFi, when they are in each other’s transmission
range. Because of the short contact duration and intermittent
connectivity, designing an efficient information dissemination
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Fig. 1. An illustration of the Facebook friends network: thenodes are the
Facebook users. The size of the nodes show the degree of the nodes. Larger
nodes have larger degrees. The thickness of the links show the social tie
strength between pairwise nodes. Thicker links have largertie strength.

policy in such a network environment becomes a challenging
problem.

One of the powerful roles that networks play is to bridge
the local and global, which guide the information flows
through a social network. The strength of the weak ties
hypothesis from sociology [3], illustrates the importanceof
weak ties in information dissemination. The tie strength has
been modeled in many online social network researches [4–
6]. Fig. 1 illustrates a Facebook friends network.N2 has a
larger degree thanN1, while N1 has more weak ties than
N2. Without N1, three individualsN3, N4, and N5 cannot
receive the information, while the neighbors ofN2 do not
have this problem. Therefore,N1 is considered more important
than N2 in information dissemination. Weak ties play an
important role in information dissemination. However, these
studies need the global information of whole social networks,
which is not suitable in MOSNs. In this paper, we propose a
distributed tie strength measurement mechanism. Every mobile
node maintains atie strength table, which records the social
tie relationship with its encountered nodes.

One particularly controversial argument is the “influentials”
hypothesis that influential individuals (with many strong ties)
catalyze the information dissemination in society [7]. Despite
this popular argument, a variety of researches suggest that
susceptibility (with many weak ties) is the key trait that
drives the diffusion of novel social information [8–10]. In
this paper, we make use of the social tie table to identify the
influentialandsusceptiblemembers in MOSNs, as to enhance
the efficiency of information dissemination.

In [11], Easley and Kleinberg claimed thatIf a nodeA in
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Fig. 2. An illustration of the local bridge linking two communities: solid
lines are thestrong ties and dashed lines are the weak ties.

a network ratifies the Strong Triadic Closure Property1 and is
involved in at least two strong ties, then any local bridge2 it
is involved in must be a weak tie. As shown in Fig. 2, if the
link betweenN1 andN2 is a strong tie, following the Strong
Triadic Closure, there must be a link betweenN2 and N3;
however, the definition of the local bridge says it cannot. If
the local bridge is a strong tie, then all other links connected
to the endpoints of the local bridge must be weak ties based on
the Strong Triadic Closure Property. Hence, in a large network,
the local bridges are more likely to be weak ties. If a node has
many weak ties, the likelihood of one being a local bridge is
relatively high. Therefore, to search for a local bridge, which
can connect multiple communities, the focus should be on
searching the susceptible nodes with many weak ties.

In this paper, we consider the information dissemination
problem as a token-based broadcast routing problem. In order
to reduce the cost, only the mobile nodes with the tokens
can forward the message to the encountered nodes. The
routing process we proposed has two phases:weak tie-driven
forwarding andstrong tie-driven forwarding.

In the weak tie-driven forwarding phase, we propose to
spread the message to more susceptible nodes, which is like
an inter-community information spread. Hence, forwarding
more tokens to the nodes with more weak ties can increase
the spread speed. Therefore, at the beginning of information
dissemination, the number of tokens assigned to the relay
node is proportional to the number of weak ties of the two
encountered nodes.

After a while, the information has been propagated to
multiple communities. Hence, the strong ties will play a
more important role, which means influential individuals (with
many strong ties) can disseminate the information to many
individuals in a short period. Therefore, the next stage is a
strong-tie driven forwarding, which is like anintra-community
information dissemination.

More specifically, the key contributions of our work can be
summarized as follows:

• We illustrate a novel distributed social tie strength calcu-
lation mechanism, which can simply calculate the social
tie strength based on the contact and social feature
information in a cost-effective way.

• We propose a two-phase social-tie-based information
dissemination algorithm, which is a token-based message
forwarding scheme, according to the tie strength of the

1If a nodeA has links to nodesB andC, then theB−C link is especially
likely to form if A’s links to B andC are both strong ties [11].

2A link joining two nodes in a graph is alocal bridge, if its endpoints have
no friends in common [11].
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Fig. 3. The percentage of involved weak ties in MIT reality mining data.

nodes with its neighbors.
• We present the design, implementation, and evaluation for

quantitatively measuring the performance of the social-
tie-based information dissemination scheme in real world
mobile traces. The effectiveness of our approach is veri-
fied through extensive simulations.

The remainder of this paper is organized as follows: we
review the related work in Section II. We then present the
details of our approach in Section III. The simulation and
evaluation are shown in Section IV. Finally, we conclude our
work in Section V.

II. RELATED WORK

Mobile opportunistic social networks (MOSNs), a new type
of DTNs, become more and more interesting, according to the
widespread use of smart phones. Researchers study MOSNs
from a social networking point of view [12–16]. Most of
them are considering routing problems in MOSNs. They
use the mobile users’ social features [13], their community
properties [14, 15], as well as the mobility of the mobile
users [16] to enhance the routing protocols. In this paper,
we use the contact information and social features of each
individual to measure the strength of their social ties.

There has been some work on data dissemination in
DTNs [17–20]. In [17], Ning et al. proposed a credit-based
incentive-aware data dissemination scheme in DTN, which
effectively tracks the value of a message, which highly de-
pends on its probability to be delivered by an intermediate
node. Gao and Cao proposed a user-centric data dissemination
in [20]. Their approach was based on a social centrality metric,
which considers the social contact patterns and interests of
mobile users simultaneously, and thus ensures effective relay
selection. In this paper, we utilize the strength of weak ties
for data dissemination.

III. SOCIAL-TIE-BASED INFORMATION DISSEMINATION

In this section, we first introduce the motivation of our
work. The datasets we used will be presented next. Then, we
discuss our proposed tie strength calculation mechanism and
two phase token-based information dissemination protocol.

A. Motivation

Mark Granovetter’s seminal 1973 paper [3],The Strength
of Weak Ties, demonstrated that weak ties play a key role in
the novel information dissemination. We verify the strength of



TABLE I
SOCIAL FEATURES IN DATASETS.

Infocom Feature MIT Feature

Affiliation Neighborhood
City Daily commute
Nationality Hangouts
Language Working hour
Country Affiliation
Position Research group

weak ties in real mobile datasets. Fig. 3 shows the percentage
of involved weak ties in MIT reality mining data by using
message flooding. We use the number of contacts or social
feature distance to identify the weak and strong ties, which
we will discuss in detail in Section III. We find that, at the
early stage, more weak ties are involved in the information
dissemination than the strong ties. Later on, strong ties become
the dominant factor.

B. Datasets

For our work, we exploit two datasets – MIT reality
mining data [21] and Infocom 2006 conference trace [22].
These two datasets includeactivity-basedand survey-based
data. The activity-based data includes the contact information
between pairwise nodes. We built an activity-based network
whereby participants act as mobile nodes, and the number of
contacts between two nodes act as contact information for
tie strength calculation. In the MIT reality mining data, the
contact information is recorded by thecall logsby phone, and
theproximity databy Bluetooth. The Infocom 2006 trace only
includes the proximity data. The data from a survey provides
self-reported personality, which we consider to be the social
features of the participants.

C. Tie Strength Calculation

In the MOSNs, there are many factors that affect the tie
strength, such as the number of contacts, contact frequencies,
contact durations, last contact time, social distance, andso on,
between two encountered nodes.

Definition: The strength of a tie is a (probably linear)
combination of the amount of time, the emotional intensity,
the intimacy (mutual confiding), and the reciprocal services
which characterize the tie[3].

In this paper, we use two factors to measure the tie strength:
contact information, which is from the activity-based data;
and social information, which is from survey-based data.
For the contact information, we use the number of contacts
between pairwise nodes as the measurement metric. For the
social information, we extract the social features from two
real datasets: MIT reality mining data and Infocom2006 trace,
as shown in Table I. Each node has a social feature vector,
which indicates its characteristic in the social features.We
use a 2-dimensional social feature vector as an example.
Dimension 1 corresponds tocity with three distinct values:
New York (0), London (1), and Paris (2); and dimension 2
corresponds togender, with two distinct values: male (0) and
female (1). A user with social feature vector[0, 1] represents
a female working in New York. If two nodes have exactly
the same value in one dimension, we assume their distance
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Fig. 4. An illustration of a five-nodes social network. The value (x/y) on
the links represent the number of contacts/the social feature distance of linked
vertices.

in this dimension is0. Otherwise, their distance is1. The
social feature distance is the summation of the distances inall
dimensions [13]. For example, a female working in New York
with social feature vector[0, 1], has social feature distance1 to
a female working in Paris with social feature vector[2, 1], and
social feature distance2 to a male working in London with
social feature vector[1, 0]. We use the social feature distance
as another metric to measure the tie strength.

In this paper, we model tie strength as a linear combination
of the number of contacts and social feature distance:

wij = αCij + β
1

1 +Dij

, (1)

wherewij represents the tie strength of nodesNi and Nj .
Cij (Cij ∈ [0, 1]) represents the normalized number of
contacts between these two nodes, which includes the call
logs and proximity data.Dij (Dij = 0, 1, 2, 3, ...) represents
the social feature distance between these two nodes, which is
used to measure the closeness between two nodes.α and β
represent the impact of contact information and social feature
information, respectively. At the same time,α+ β = 1.

In the learning process, each node calculates the tie strength
with the encountered nodes, and creates a weighted adjacency
matrix. Then, the definition of strong and weak ties was
established as follows: following [23, 24], from the weighted
adjacency matrix, we used as a threshold the 59th percentileof
the link weights cumulative distribution; then, links weighted
higher than or equal to the threshold were considered as strong
ties, while links with a weight less than the threshold were
marked as weak ties.

For example, Fig. 4 illustrates a five-nodes social network,
G(V,E), where each link shows the condition of the linked
pairwise nodes. As shown in Fig. 4,x/y labeled on each link
representsthe number of contacts/the social feature distance.
In this example, each node has 5 social features. Here, we
assumeα andβ in Eq. 1 are the same, with value1

2
. Therefore,

we can create a5 × 5 weighted symmetric adjacency matrix
according to Eq. 1:
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Algorithm 1 Weak Tie-Driven Forwarding

/∗ When a message holderNi with c tokens meets node
Nj without the message.∗/
/∗ Forward the message toNj . ∗/
if Wj > Wi then

Give
⌈

Wj

Wi+Wj
c
⌉

number of tokens toNj

Based on this adjacency matrix, we can calculate the thresh-
old (( 4

5
− 1

6
) × 59% ≈ 0.374). Finally, we can distinguish

the strong and weak ties. In this example, the links (N1, N3),
(N2, N4), (N2, N5), and (N3, N5) are strong ties, while the
links (N1, N2), (N1, N4), (N1, N5), (N2, N3), (N3, N4), and
(N4, N5) are weak ties.

Then, each node can maintain its social tie table, recording
the relationship to its encountered nodes. In each contact,the
encountered nodes will exchange their social tie tables.

D. Two-Phase Token-based Message Forwarding

1) Influential and susceptible nodes:Local bridges linking
multiple communities can disseminate the information among
these communities. In a large social network, the local bridges
are more likely to be the weak ties [11]. Thesusceptiblenodes
with many weak ties have high probability, located on the local
bridges. A variety of literatures have claimed that susceptible
nodes play a key role in novel information dissemination.
In this paper, we propose a token-based message forwarding
with two phases:weak tie-driven forwardingand strong tie-
driven forwarding. The mobile nodes with the message tokens
can forward the message to the encountered nodes. In the
early stage, susceptible nodes will receive more tokens, which
we call ’weak tie-driven forwarding’. After a while, the
message has been spread to multiple communities. It is more
important thatinfluential nodes, with more strong ties, deliver
the message to the group members. Therefore, we change to
a strong tie-driven forwarding scheme, which forwards more
tokens to influential nodes.

2) Weak tie-driven forwarding:The individuals with many
weak ties are considered to be the susceptible members in the
MOSNs, who do not cluster in the network, while the influ-
ential individuals do [1]. A node with many weak ties has a
relatively high probability of locating on a local bridge, which
links different communities; therefore, susceptible members
play a key role in novel information dissemination. Here, we
propose a weak tie-driven forwarding algorithm in the early
stage of information dissemination. When a message holder
Ni, with c number of tokens, encounters a nodeNj without
that message, it forwards the message toNj . If Nj has more

weak ties thanNi, Ni will give
⌈

Wj

Wi+Wj
c
⌉

number of tokens
toNj , whereWi is the number of weak ties ofNi. Algorithm 1
shows the whole process of weak tie-driven forwarding.

3) Strong tie-driven forwarding:The influential individu-
als, with many strong ties, cluster in the network and can
influence the other infected nodes with a high probability in
the local communities. When the information has been spread

TABLE II
THE PERFORMANCE OF DIFFERENT TIE STRENGTH CALCULATION

SCHEMES INMIT REALITY MINING TRACE

α = 0.5 α = 0.75 α = 0.25 α = 1 α = 0

β = 0.5 β = 0.25 β = 0.75 β = 0 β = 1

Delivery ratio 81.3% 83% 80.8% 79.3% 76.5%
Latency (Sec.) 328k 310k 323k 327k 343k

TABLE III
THE PERFORMANCE OF DIFFERENT TIE STRENGTH CALCULATION

SCHEMES ININFOCOM2006TRACE

α = 0.5 α = 0.75 α = 0.25 α = 1 α = 0

β = 0.5 β = 0.25 β = 0.75 β = 0 β = 1

Delivery ratio 89.5% 89.1% 91% 87.8% 88.3%
Latency (Sec.) 40.3k 41.2k 40k 44.3k 42.5k

to multiple communities, our forwarding strategy will turnto
a strong tie-driven forwarding.

There are many factors that affect the two phases’ switch
time. However, considering the properties of MOSNs, every
node does not have the global information, such as how many
nodes in the network have received the new information.
Therefore, the token holders can only use the number of tokens
they have to estimate the information dissemination situation.

When the number of tokens held by the mobile nodes is
below a predefined threshold, our information dissemination
process switches to the second phase: strong tie-driven for-
warding. The strong tie-driven forwarding phase is also a
token-based broadcast process. When a message holderNi,
with c number of tokens, encounters a nodeNj without a
message, it forwards the message toNj . The number of tokens

assigned toNj is
⌈

Sj

Si+Sj
c
⌉

, if Nj has more strong ties than
Ni. Here,Si is the number of strong ties ofNi.

IV. SIMULATION AND EVALUATION

We evaluate the performance of the proposed two-phase
token-based message forwarding scheme (TTF ) through trace-
driven simulations.

A. Simulation Setting and Comparison Scheme

In all experiments, the first half of the trace is used for
the learning process, which is for the accumulation of the
network information, the process of collecting the contact
information, and calculating the tie strength combined with the
social feature information. After the first half learning process,
we can create an adjacency matrix, then distinguish the weak
ties and strong ties following the method we discussed in
Section III-C. The new information generation and information
dissemination happens during the second half of both traces.

In the simulation, we compare our proposed scheme with
the following information dissemination schemes in MOSNs:

1) Flooding (F), in which the message holder will forward
half of the token to the encountered node without the message.

2) Weak tie-driven forwarding (WF) , which is the same as
the first phase of our proposed two-phase token-based scheme.

3) Strong tie-driven forwarding (SF), which is the same
as the second phase of our proposed two-phase token-based
scheme.
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Fig. 5. Comparing the performance of different schemes in different initial
numbers of tokens in the MIT reality mining trace: (L): delivery ratio; (R):
latency.
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Fig. 6. Comparing the performance of different schemes in different initial
numbers of tokens in the Infocom2006 trace: (L): delivery ratio; (R): latency.

B. Different Schemes for Tie Strength Calculation

First, we compare the performance of different tie strength
calculation schemes. As we discussed in Section III-C, we
will compare the performance in different values ofα andβ
in Eq. 1. We set the initial number of tokens (C) created by the
source ton

2
, wheren is the number of of nodes in the whole

network. When the number of tokens held by the message
holder is below a threshold⌈log2 C⌉, the token forwarding
strategy will switch from the weak tie-driven forwarding phase
to a strong tie-driven forwarding phase.

As shown in Tables II and III, we can see that when one
set of the information is excluded from learning process (α =
1, β = 0 or α = 0, β = 1), the delivery ratio will reduce,
and latency will increase. In the MIT trace, contact information
can predict the tie strength more accurately, especially when
α = 0.75 and β = 0.25, in Table II. Therefore, in the rest
of the simulation, we setα to 0.75 andβ to 0.25 in the MIT
trace. In the Infocom2006 trace, the social feature information
is more important than the contact information. Whenα =
0.25, β = 0.75, the performance is best among all schemes,
as shown in Table III. Therefore, in the rest of the simulation,
we setα to 0.25 andβ to 0.75 in the Infocom2006 trace.

C. Performance in Limited Initial Tokens

Then, we evaluate different protocols in different initial
numbers of tokens (C). The initial number of tokens created
by the source is

⌈√
n

2

⌉

, ⌈√n⌉, n
2

, andn. When the number
of tokens held by the message holder is below a threshold
⌈log2 C⌉, in TTF , the token forwarding strategy will switch
from the weak tie-driven forwarding phase to the strong
tie-driven forwarding phase. Here, we compare the delivery
ratio in different settings, and latency when the delivery ratio
reaches50%.
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Fig. 7. Comparing the performance of different schemes in different delivery
ratios: (L): MIT; (R): Infocom.

From Figs. 5 and 6, we can see that our proposed two-phase
token-based information dissemination scheme has a much
higher delivery ratio compared with the other three forwarding
schemes, especially when the initial number of tokens is
smaller. The simulation results indicate the robustness ofour
proposed scheme, and it performs much better than other
schemes in limited resource conditions (here, we consider the
initial number of tokens as the resource).

Since some schemes can not achieve50% delivery ratio,
when the initial number of tokens is

⌈√
n

2

⌉

in both MIT reality
mining and Infocom2006 traces, we consider that the latency
of these schemes in this condition is infinite. In Figs. 5 and 6,
we find that our scheme can dramatically reduce the latency
in all conditions.

D. Performance in Different Delivery Ratios

Here, we compare the latency of different protocols in
different delivery ratios. We set the delivery ratio to50%, 60%,
70%, and 80%. The initial number of tokens created by the
source isn

2
in this part. The two phases’ switch threshold is

also⌈log2 C⌉ = ⌈log2 n/2⌉ in TTF .
Fig. 7 shows the latency comparison of different schemes

in different delivery ratio constraints. Compared to weak
tie-driven forwarding and strong tie-driven forwarding, our
proposed two-phase token-based message forwarding scheme
reduces the latency by about 15% in the MIT reality mining
trace, and 21% in the Infocom2006 trace in Fig. 7. Our
scheme performance is much better in the lower delivery
ratio condition, compared to the flooding scheme. This means
that our scheme can spread the new information quickly at
the beginning of information dissemination, while flooding
scheme may waste the contacts among the friend nodes, who
contact each other in high frequency.

E. Impact of The Two Phases’ Switch Threshold

We also compare the performance of our proposed two-
phase token-based message forwarding in different switch
thresholds. The comparison switch thresholds are set as
⌈

log
2
C

2

⌉

, ⌈log2 C⌉, and⌈2× log2 C⌉, respectively. The initial
number of tokens created by the source is set ton

2
. Here, we

compare the delivery ratio in different settings, and latency
when the delivery ratio reaches50%.

From Tables IV and V, we can see that in both MIT and
Infocom2006 traces, the performance varies with the change
of the two phases’ switch threshold. When the threshold is



TABLE IV
THE PERFORMANCE OF OUR SCHEME IN DIFFERENT TWO PHASES’

SWITCH THRESHOLDS INMIT REALITY MINING TRACE

Threshold
⌈

log2 C

2

⌉

⌈log2 C⌉ ⌈2× log2 C⌉

Delivery ratio 69% 83% 75%
Latency (Sec.) 363k 310k 345k

TABLE V
THE PERFORMANCE OF OUR SCHEME IN DIFFERENT TWO PHASES’

SWITCH THRESHOLDS ININFOCOM2006TRACE

Threshold
⌈

log2 C

2

⌉

⌈log2 C⌉ ⌈2× log2 C⌉

Delivery ratio 85% 91% 82%
Latency (Sec.) 42.7k 40k 44.9k

too small, our scheme will work as weak tie-driven for-
warding the majority of the time. When the threshold is too
large, our scheme will switch to strong tie-driven forwarding
quickly. In both situations, the delivery ratio will decrease,
while the latency increases. Therefore, choosing an accurate
switch threshold is very important for the performance of our
proposed two-phase token-based message forwarding scheme.

F. Summary of Simulation

In this section, we evaluate our proposed two-phase token-
based information dissemination scheme in two real world
mobile traces: the MIT reality mining campus trace, and the
Infocom2006 conference trace. The simulation results show
that our proposed scheme has better performance in both
delivery ratio and latency in different network environments,
compared to other schemes. When the resources are limited,
which means the source node generates a small amount of
tokens, our approach performs even better, increasing the
delivery ratio and decreasing latency more dramatically than
other approaches. The results in various delivery ratio scenar-
ios indicate that our scheme can spread the novel information
to certain fractions of users in the network quickly. By
changing the value of the two phases’ switch threshold, we
find that our scheme performs best when the switch threshold
is equal to⌈log2 C⌉, whereC is the initial number of tokens
generated by the source node.

V. CONCLUSION

In this paper, we present a social-tie-based information
dissemination scheme in MOSNs. We leverage the strength
of weak ties and susceptible nodes in novel information
dissemination for token split guidance. We design a tie strength
calculation mechanism to distinguish the weak and strong ties,
which considers both the contact and social feature infor-
mation. Then, a two-phase token-based message forwarding
algorithm is introduced and evaluated in different network
environments in real world mobile traces. The simulation
results verify the effectiveness of our proposed approach.Our
future work will include more experiments on different social
network traces to validate the effectiveness of our approach.
We also plan to develop a mobile phone application to exploit
the social network properties in large scale mobile social
networks.
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