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Abstract—A mobile opportunistic social network (MOSN) is Ns
a new type of delay tolerant network (DTN), in which the N4\£ °
mobile users contact each other opportunistically. Information N3 o, © o
dissemination is a challenging problem in MOSNs, due to uncer- Lo oo
tainty and intermittent connectivity. In this paper, we propose a o o°o e . o—0 % 2
distributed social tie strength calculation mechanism to identify o0 %% O %50~ %00 AR
the relationship between each set of pairwise mobile nodes. 0 % o .00'05'76.0 %8 oRS)
Following arguments originally proposed by Mark Granovetter's ° 20 Oo O o O OOOO
seminal 1973 paper,The Strength of Weak Ties, the majority of 4 %o 000
the novel information dissemination is generated by weak ties. o0

We first evaluate the strength of weak ties inMIT reality mining
data. Then, a social-tie-based information dissemination protocol
is presented, which is a token-based information dissemination Fig. 1. An illustration of the Facebook friends network: thedes are the
scheme, including two phasesweak tie-driven forwarding and Facebook users. The size of the nodes show the degree of des.ricarger
strong tie-driven forwarding. In the weak tie-driven forwarding nedes have larger degrees. The thickness of the links shevsdhial tie
phase, the susceptible nodes with more weak ties will receivestrength between pairwise nodes. Thicker links have latigestrength.

more tokens for future forwarding. The number of forwarding

tokens is related to the number of weak ties of two encountered policy in such a network environment becomes a challenging
nodes. After a while, the information will have been spread problem.

to multiple communities. Our scheme switches to a strong tie . .
driven forwarding phase, in which the influential nodes are more ~ One of the powerful roles that networks play is to bridge
important. The number of forwarding tokens is proportional to  the local and global, which guide the information flows
the number of strong ties of two encountered nodes. Extensive through a social network. The strength of the weak ties
_S|mulat|0ns are cc_mducted in comparison to several approaches hypothesis from sociology [3], illustrates the importarafe

in real world mobile traces. N . . L .

Index Terms—Influential. information dissemination. local Weak ties in information dissemination. The tie strengtls ha
bridge, mobile opportunistic social networks (MOSNSs), social tie been. mod(.aled in many online SOC'?' network researches [4-
strength, susceptible. 6]. Fig. 1 illustrates a Facebook friends netwof¥; has a

larger degree tharV;, while N; has more weak ties than
I. INTRODUCTION Ns. Without Ny, three individualsN3, N4, and N5 cannot
receive the information, while the neighbors &% do not

Social influence is empirically elusive in the social scesc have this problem. Therefory, is considered more important
Scholars from different fields as diverse as business, ct&an{han N in inforrﬁation diss,émination Weak ties play an
2 .

science, physics, and sociology are interested in who iani nportant role in information dissemination. However, dae
ences whom, how to efficiently disseminate information, anErp . ) . ' ) ’
udies need the global information of whole social netwprk

: . S
how to prevent virus contagion. The answers to these ques-." . . .
tions, which are critical to policies, depend on the robestn W%Ch is not suitable in MOSNS. In this paper, we propose a

of estimations of the degree to which contagion is at wo%fégbﬁgﬂgnsstr;gggr?ne?ﬁutraea] exaﬁﬁcrgiglfdt'tﬁ\éegggb
during the social information influence [1]. 9 e

Delay tolerant networks (DTNs) [2] are characterized bt)'/e relationship with its encountered nodes.

intermittent connectivity and limited network capacityy i ©One particularly controversial argument is the “influetstia
which most of the time there does not exist an end-tdypothesis that influential individuals (with many stromgs)

end path between some or all of the nodes in the netwof@talyze the information dissemination in society [7]. pies
With the popularization of smart phones, mobile opportimis this popular argument, a variety of researches suggest that
social networks (MOSNS), a new type of DTN, have recent|§).JsceptibiIity (with many weak ties) is the key trait that
become popular. In MOSNSs, the individuals carrying sma#rives the diffusion of novel social information [8-10]. In
phones walk around and communicate with each other S paper, we make use of the social tie table to identify the
Bluetooth or WiFi, when they are in each other’s transmissignfluential andsusceptiblenembers in MOSNSs, as to enhance
range. Because of the short contact duration and intemnittéh€ efficiency of information dissemination.

connectivity, designing an efficient information disseatian In [11], Easley and Kleinberg claimed thHta node A in
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Fig. 2. An illustration of the local bridge linking two commtieis: solid
lines are thestrongties and dashed lines are the weak ties.

Percentage of Involved Weak Ties

a network ratifies the Strong Triadic Closure Propérand is R L
involved in at least two strong ties, then any local britige Time (Sec)

is involved in must be a weak tids shown in Fig. 2, if the Fig. 3. The percentage of involved weak ties in MIT reality mgndata.
link betweenN; and N, is a strong tie, following the Strong
Triadic Closure, there must be a link betwedh and Ns;
however, the definition of the local bridge says it cannot. If *
the local bridge is a strong tie, then all other links conedct

to the endpoints of the local bridge must be weak ties based on
the Strong Triadic Closure Property. Hence, in a large ne¢wo fied through extensive simulations
the local bridges are more likely to be weak ties. If a node has i , ) o

many weak ties, the likelihood of one being a local bridge is The remainder of this .paper !S organized as follows: we
relatively high. Therefore, to search for a local bridgejalth "€ViEW the related work in Section Il. We then present the

can connect multiple communities, the focus should be &gtails of our approach in Section Ill. The simulation and
searching the susceptible nodes with many weak ties. evaluation are shown in Section IV. Finally, we conclude our

In this paper, we consider the information disseminatioffo’K in Section V.
problem as a token-based broadca;t routing prpblem. Irr orde Il. RELATED WORK
to reduce the cost, only the mobile nodes with the tokens
can forward the message to the encountered nodes. 'BI?

routing process we proposed has two pha k tie-driven widespread use of smart phones. Researchers study MOSNs

forwarding andstrong tie-driven forwarding from a social networking point of view [12-16]. Most of

In the weak tie-driven forwarding phase, we propose % em are considering routing problems in MOSNs. They

spread the message to more suscepible nodes, which is Lﬂ%% the mobile users’ social features [13], their community

an inter-communityinformation spread. Hence, forwarding roperties [14, 15], as well as the mobility of the mobile

more tokens to the nodes with more weak ties can increase . .
. . users [16] to enhance the routing protocols. In this paper,

the spread speed. Therefore, at the beginning of informatio ; . :
. S . we use the contact information and social features of each
dissemination, the number of tokens assigned to the relay,. - ; L
individual to measure the strength of their social ties.

node is proportional to the number of weak ties of the two There has been some work on data dissemination in

encountered nodes. ) :
After a while, the information has been propagated t%TNS.[N_ZO]' In [17], .ng et a.ll' proposed a cred|t-bas_ed
. . . . incentive-aware data dissemination scheme in DTN, which
multiple communities. Hence, the strong ties will play a

more important role, which means influential individualstfw effectively tracks the value of a message, which highly de-

. . . ) . Rends on its probability to be delivered by an intermediate
many strong ties) can disseminate the information to ma ¥ : . S
node. Gao and Cao proposed a user-centric data disseminatio

individuals in a short period. Therefore, the next stage is.a ; : o
ST . N - ~in [20]. Their approach was based on a social centralityimetr
strong-tie driven forwarding, which is like antra-community

. . . S which considers the social contact patterns and interests o

information dissemination. . .

o S mobile users simultaneously, and thus ensures effectlag re

More specifically, the key contributions of our work can be : . o )
. i Selection. In this paper, we utilize the strength of weak tie

summarized as follows:

. _r o for data dissemination.
o We illustrate a novel distributed social tie strength calcu

lation mechanism, which can simply calculate the socialll. SOCIAL-TIE-BASED INFORMATION DISSEMINATION

tie strength based on the contact and social featurein this section, we first introduce the motivation of our
information in a cost-effective way. _ “work. The datasets we used will be presented next. Then, we
« We propose a two-phase social-tie-based informati@fiscuss our proposed tie strength calculation mechanisin an

dissemination algorithm, which is a token-based messaggy phase token-based information dissemination protocol
forwarding scheme, according to the tie strength of the o
A. Motivation
1if a node A has links to node® andC, then theB — C' link is especially ) ;
likely to form if A’s links to B andC' are both strong ties [11]. Mark Gr.anovetters seminal 1973 p"’?per [S]he Strength .
of Weak Tiesdemonstrated that weak ties play a key role in

2A link joining two nodes in a graph is lacal bridge if its endpoints have ) - ¢ Sl X
no friends in common [11]. the novel information dissemination. We verify the stréngt

nodes with its neighbors.

We present the design, implementation, and evaluation for
quantitatively measuring the performance of the social-
tie-based information dissemination scheme in real world
mobile traces. The effectiveness of our approach is veri-

Mobile opportunistic social networks (MOSNS), a new type
FfDTNs, become more and more interesting, according to the



TABLE |
SOCIAL FEATURES IN DATASETS

Infocom Feature [[ MIT Feature |

Affiliation Neighborhood
City Daily commute
Nationality Hangouts
Language Working hour
Country Affiliation
Position Research group|

weak ties in real mobile datasets. Fig. 3 shows the percentag
of involved We‘_ak ties in MIT reality mining data by USingF_ig. 4. An illustration of a five-nodes social network. Theuea(z/y) on
message flooding. We use the number of contacts or sogi@llinks represent the number of contacts/the social featistance of linked
feature distance to identify the weak and strong ties, whi#hrtices.

we will discuss in detail in Section Ill. We find that, at then this dimension is0. Otherwise, their distance is. The
early stage, more weak ties are involved in the informatiasbcial feature distance is the summation of the distance# in
dissemination than the strong ties. Later on, strong tiesfe dimensions [13]. For example, a female working in New York
the dominant factor. with social feature vectdp), 1], has social feature distanteo

a female working in Paris with social feature vectar1], and
social feature distanc2 to a male working in London with

For our work, we exploit two datasets — MIT realitys,cig) feature vectoft, 0]. We use the social feature distance
mining data [21] and Infocom 2006 conference trace [22],

g . s another metric to measure the tie strength.
These two datasets includeetivity-basedand survey-based | this paper, we model tie strength as a linear combination
data. The activity-based data includes the contact infdoma ¢ the number of contacts and social feature distance:
between pairwise nodes. We built an activity-based network 1
whereby participants act as mobile nodes, and the number of w;j = aCyj + f——r, (1)
contacts between two nodes act as contact information for 1+ Dy
tie strength calculation. In the MIT reality mining dataethwhere w;; represents the tie strength of nod&s and NN;.
contact information is recorded by tisall logsby phone, and C;; (C;; € [0,1]) represents the normalized number of
the proximity databy Bluetooth. The Infocom 2006 trace onlycontacts between these two nodes, which includes the call
includes the proximity data. The data from a survey providésgs and proximity dataD;; (D;; = 0,1,2,3,...) represents
self-reported personality, which we consider to be theadocthe social feature distance between these two nodes, which i
features of the participants. used to measure the closeness between two nedesd 3
represent the impact of contact information and sociaufeat
information, respectively. At the same time+ g = 1.

In the MOSNs, there are many factors that affect the tie |y the |earning process, each node calculates the tie $treng
strength, such as the number of contacts, contact freqe&nciyith the encountered nodes, and creates a weighted adjacenc
contact durations, last contact time, social distance,sanoh, matrix. Then, the definition of strong and weak ties was
between two encountered nodes. _ established as follows: following [23, 24], from the weigtit

Definition: The strength of a tie is a (probably linear)adjacency matrix, we used as a threshold the 59th perceftile
combination of the amount of time, the emotional intensitye |ink weights cumulative distribution; then, links whtgd
the intimacy (mutual confiding), and the reciprocal sersicenigher than or equal to the threshold were considered asgstro

which characterize the tigg]. _ ties, while links with a weight less than the threshold were
In this paper, we use two factors to measure the tie strengfiarked as weak ties.

contact information which is from the activity-based data; For example, Fig. 4 illustrates a five-nodes social network,

and social information which is from survey-based data.G(V, E), where each link shows the condition of the linked
For the contact information, we use the number of contagigirwise nodes. As shown in Fig. 4/y labeled on each link
between pairwise nodes as the measurement metric. For fhgresentshe number of contacts/the social feature distance
social information, we extract the social features from twg, this example, each node has 5 social features. Here, we
real datasets: MIT reality mining data and Infocom2006€racassymey and3 in Eq. 1 are the same, with valde Therefore

as shown in Table I. Each node has a social feature veCige can create & x 5 weighted symmetric adjacency matrix
which indicates its characteristic in the social featul® 5ccording to Eq. 1:

use a 2-dimensional social feature vector as an example.
Dimension 1 corresponds taity with three distinct values:
New York (0), London (1), and Paris (2); and dimension 2
corresponds tgender with two distinct values: male (0) and
female (1). A user with social feature vector, 1] represents

a female working in New York. If two nodes have exactly
the same value in one dimension, we assume their distance

B. Datasets

C. Tie Strength Calculation
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TABLE I

Algorlthm 1 Weak Tie-Driven Forwardlng THE PERFORMANCE OF DIFFERENT TIE STRENGTH CALCULATION

/+x When a message holdé¥; with ¢ tokens meets node SCHEMES INMIT REALITY MINING TRACE
N; without the message:/ H a=05]a=07 |a=025 |a=1 ‘ a=0 ‘
/* Forward the message ;. */ : 1| B=05]5=025 | B=075 ]| =0 F=1
it . > . then [ Delivery ratio || 81.3% | 83% | 80.8% | 79.3% | 76.5% |
i o [ Catency (Sec) || 328k | 310k | 323k | 327k | 343k |
Give [ch number of tokens tav;
cr TABLE Il

THE PERFORMANCE OF DIFFERENT TIE STRENGTH CALCULATION
SCHEMES ININFOCOM2006 TRACE

Bas4ed on this adjacency matrix, we can calculate the thresh- H 5= o 5o o 5= 02 gjé ‘ g:(f ‘
old (5 — §) x 59% ~ 0.374). Finally, we can distinguish  Ddivey ratio || 895% | 89.1% | 91% | 87.8% | 88.3% |
the strong and weak ties. In this example, the linkg,(V3), [ Latency (Sec) || 403k [ 41.2k [ 40k | 44.3k | 42.5k |

(N2, Ny), (N2, Ns5), and (V3, Ns) are strong ties, while the ] - ) ]
links (N1, Na), (N1, Ny), (N1, Ns), (Na, N3), (N3, Ny), and to multiple communities, our forwarding strategy will tuto
(N4, N5) are weak ties. a strong tie-driven forwarding.
Then, each node can maintain its social tie table, recording’nere are many factors that affect the two phases’ switch
the relationship to its encountered nodes. In each cortteet, ime. However, considering the properties of MOSNs, every

encountered nodes will exchange their social tie tables. ~Node does not have the global information, such as how many
nodes in the network have received the new information.

D. Two-Phase Token-based Message Forwarding Therefore, the token holders can only use the number of token

1) Influential and susceptible nodekpcal bridges linking they have to estimate the information dissemination sinat
multiple communities can disseminate the information agnon When the number of tokens held by the mobile nodes is
these communities. In a large social network, the localdgesd below a predefined threshold, our information dissemimatio
are more likely to be the weak ties [11]. Thesceptibleodes process switches to the second phase: strong tie-driven for
with many weak ties have high probability, located on thelocwarding. The strong tie-driven forwarding phase is also a
bridges. A variety of literatures have claimed that susbépt token-based broadcast process. When a message higjder
nodes play a key role in novel information disseminationwvith ¢ number of tokens, encounters a nofle without a
In this paper, we propose a token-based message forwardingssage, it forwards the messagévio The number of tokens
with two phasesweak tie-driven forwardingand strong tie- assigned taV; is %Cw if N; has more strong ties than
driven forwarding The mobile nodes with the message tokeng.. Here, S, is the number of strong ties a¥;.
can forward the message to the encountered nodes. In the
early stage, susceptible nodes will receive more tokenighwh IV. SIMULATION AND EVALUATION

we call 'weak tie-driven forwarding’. After a while, the

message has been spread to multiple communities. It is mordVe evaluate the performance of the proposed two-phase
important thainfluential nodes, with more strong ties, delivertokén-based message forwarding schefi) through trace-
the message to the group members. Therefore, we chang@f¥en simulations.
a strong tie-driven forwarding scheme, which forwards more ] ] i
tokens to influential nodes. A. Simulation Setting and Comparison Scheme

2) Weak tie-driven forwardingThe individuals with many  |n all experiments, the first half of the trace is used for
weak ties are considered to be the susceptible members intthe learning process, which is for the accumulation of the
MOSNSs, who do not cluster in the network, while the influnetwork information, the process of collecting the contact
ential individuals do [1]. A node with many weak ties has gformation, and calculating the tie strength combinedwlite
relatively high probability of locating on a local bridgehigh  social feature information. After the first half learningpess,
links different communities; therefore, susceptible mersb we can create an adjacency matrix, then distinguish the weak
play a key role in novel information dissemination. Here, Wges and strong ties following the method we discussed in
propose a weak tie-driven forwarding algorithm in the earlgection III-C. The new information generation and inforimat
stage of information dissemination. When a message hol@dggsemination happens during the second half of both traces
N;, with ¢ number of tokens, encounters a nale without  |n the simulation, we compare our proposed scheme with
that message, it forwards the messageVo If V; has more the following information dissemination schemes in MOSNS:
weak ties thanV;, N; will give WVK;VJ CW number of tokens 1) Flooding (F), in which the message holder will forward
to N;, whereW; is the number of weak ties 6f;. Algorithm 1 half of the token to the encountered node without the message
shows the whole process of weak tie-driven forwarding. 2) Weak tie-driven forwarding (WF) , which is the same as

3) Strong tie-driven forwarding:The influential individu- the first phase of our proposed two-phase token-based scheme
als, with many strong ties, cluster in the network and can 3) Strong tie-driven forwarding (SF), which is the same
influence the other infected nodes with a high probability ias the second phase of our proposed two-phase token-based
the local communities. When the information has been sprescheme.
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From Figs. 5 and 6, we can see that our proposed two-phase
e T ] e . = | token-based information dissemination scheme has a much
= I 7 | ot A\ higher delivery ratio compared with the other three forviragd
,O,SF schemes, especially when the initial nhumber of tokens is
ool smaller. The simulation results indicate the robustnessuof
sof proposed scheme, and it performs much better than other
“or schemes in limited resource conditions (here, we consfkder t
o1 initial number of tokens as the resource).
R E . Since some schemes can not achié0& delivery ratio,
_ _ ' - when the initial number of tokens is5~ ﬁ in both MIT reality
E:?r-nS-Qrs%??;iz:::%;’:seﬁi;?;m;gse‘);:ssrfd”eﬁsz?;':;zzﬁgf;’*.‘::z:::?;_ mining and Infocom2006 traces, we consider that the latency
_ i _ of these schemes in this condition is infinite. In Figs. 5 and 6
B. Different Schemes for Tie Strength Calculation we find that our scheme can dramatically reduce the latency
First, we compare the performance of different tie strength all conditions.
calculation schemes. As we discussed in Section 1lI-C, We
will compare the performance in different valuescofand 3 D- Performance in Different Delivery Ratios
in Eq. 1. We set the initial number of tokenS)(created by the ~ Here, we compare the latency of different protocols in
source to%, wheren is the number of of nodes in the wholedifferent delivery ratios. We set the delivery ratio5ts, 60%,
network. When the number of tokens held by the message’o, and80%. The initial number of tokens created by the
holder is below a thresholdllog, C], the token forwarding source is3 in this part. The two phases’ switch threshold is
strategy will switch from the weak tie-driven forwardinggste also [log, C'] = [logy /2] in TTF.
to a strong tie-driven forwarding phase. Fig. 7 shows the latency comparison of different schemes
As shown in Tables Il and Ill, we can see that when on@ different delivery ratio constraints. Compared to weak
set of the information is excluded from learning process<( tie-driven forwarding and strong tie-driven forwardingyro
1, B=0o0ra=0, 3 =1), the delivery ratio will reduce, proposed two-phase token-based message forwarding scheme
and latency will increase. In the MIT trace, contact infotima  reduces the latency by about 15% in the MIT reality mining
can predict the tie strength more accurately, especiallgrwhtrace, and 21% in the Infocom2006 trace in Fig. 7. Our
a = 0.75 and 8 = 0.25, in Table Il. Therefore, in the rest scheme performance is much better in the lower delivery
of the simulation, we set to 0.75 and 8 to 0.25 in the MIT  ratio condition, compared to the flooding scheme. This means
trace. In the Infocom2006 trace, the social feature inféiona that our scheme can spread the new information quickly at
is more important than the contact information. When= the beginning of information dissemination, while flooding
0.25, 8 = 0.75, the performance is best among all schemesgheme may waste the contacts among the friend nodes, who
as shown in Table IIl. Therefore, in the rest of the simulatio contact each other in high frequency.
we seta t0 0.25 and 8 to 0.75 in the Infocom2006 trace.

E. Impact of The Two Phases’ Switch Threshold

C. Performance in Limited Initial Tokens We also compare the performance of our proposed two-
Then, we evaluate different protocols in different initiaphase token-based message forwarding in different switch

numbers of tokens(). The initial number of tokens createdthresholds. The comparison switch thresholds are set as

by the source i f , [v/n], &, andn. When the number 1°g22 W [log, C'], and[2 x log, C'], respectively. The initial

of tokens held by the message holder is below a thresheldmber of tokens created by the source is sef tdlere, we

[log, C'l, in TTF, the token forwarding strategy will switch compare the delivery ratio in different settings, and lejen

from the weak tie-driven forwarding phase to the strongshen the delivery ratio reaché8%.

tie-driven forwarding phase. Here, we compare the delivery From Tables IV and V, we can see that in both MIT and

ratio in different settings, and latency when the delivatia Infocom2006 traces, the performance varies with the change

reaches50%. of the two phases’ switch threshold. When the threshold is



TABLE IV
THE PERFORMANCE OF OUR SCHEME IN DIFFERENT TWO PHASES
SWITCH THRESHOLDS INMIT REALITY MINING TRACE

logo, C
Threshold H [gTz} \ Mog, C] \ 12 x log, C]
Delivery ratio 69% 83% 75%
Catency (Sec) || 363K 310K 345K
TABLE V

THE PERFORMANCE OF OUR SCHEME IN DIFFERENT TWO PHASES
SWITCH THRESHOLDS ININFOCOM2006 TRACE

Threshold H [%} \ Mog, C] \ 12 x log, C]
Delivery ratio 85% 91% 82%
Latency (Sec) || 42.7K 40k 249k

too small, our scheme will work as weak tie-driven for-

warding the majority of the time. When the threshold is too

large, our scheme will switch to strong tie-driven forwaugli
quickly. In both situations, the delivery ratio will decesa

while the latency increases. Therefore, choosing an am:urégl

switch threshold is very important for the performance of ou
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